# Optical Coherence Tomography Characterization of Shockwave IVL for Treatment of Calcified Coronary Lesions

Patient-level Pooled Analysis of the Disrupt CAD OCT Sub-studies

#### Ziad A. Ali, MD DPhil

Department of Cardiology, St. Francis Hospital & Heart Center Roslyn, New York



## **Disclosure Statement of Financial Interest**

DISRIPT

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

| Affiliation/Financial Relationship | Company                       |
|------------------------------------|-------------------------------|
| Consulting Fees                    | Abbott Vascular Inc           |
| Consulting Fees                    | Boston Scientific Corporation |
| Consulting Fees                    | Shockwave Medical             |
| Stock Shareholder/Equity           | Shockwave Medical             |



#### **Individual Patient-data Pooled Analysis**

#### **Disrupt CAD I-IV: OCT Sub-studies**

|                               | CADI                                                 | CAD II              | CAD III             | CAD IV              | Pooled              |  |  |
|-------------------------------|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|--|--|
| Enrollment                    | Dec 2015 – Sep 2016                                  | May 2018 – Mar 2019 | Jan 2019 – Mar 2020 | Nov 2019 – Apr 2020 | Dec 2015 – Apr 2020 |  |  |
| Study design                  | Prospective, multi-center, single-arm                |                     |                     |                     |                     |  |  |
| ITT (N)                       | 60 <sup>1</sup>                                      | 120 <sup>3</sup>    | 3844                | 64 <sup>5</sup>     | 628 <sup>6</sup>    |  |  |
| OCT Analysis <sup>*</sup> (N) | 28 <sup>2</sup>                                      | 57                  | 106†                | 71†                 | 262                 |  |  |
| OCT core laboratory           | Cardiovascular Research Foundation                   |                     |                     |                     |                     |  |  |
| Target lesions                | Severely calcified*, de novo coronary artery lesions |                     |                     |                     |                     |  |  |
| Target lesion RVD             | 2.5mm – 4.0mm                                        |                     |                     |                     |                     |  |  |
| Target lesion stenosis        | ≥50% and<br><100%                                    | ≥50% and<br><100%   | ≥70% and<br><100%   | ≥70% and<br><100%   |                     |  |  |

\*Patient enrollment in OCT sub-studies was open to all sites participating in the Disrupt CAD studies that routinely perform OCT imaging. †Includes patients from the roll-in cohort.

Consistent OCT core laboratory evaluation across all OCT sub-studies



<sup>1</sup>Brinton et al. Circulation 2019;139:834-836, <sup>2</sup>Ali et al. J Am Coll Cardiol Img 2017;10:897-906, <sup>3</sup>Ali et al. Circ Cardiovasc Interv 2019;12:e008434, <sup>4</sup>Hill et al. J Am Coll Cardiol 2020;76:2635-46, <sup>5</sup>Saito et al. Circ J 2021;85(6):826-33, <sup>6</sup>Kereiakes et al., J Am Coll Cardiol Intv 2021;14:1337-48

#### **Baseline Clinical & Lesion Characteristics**

| Characteristic       | N = 248 | Core Lab Ana       | alysis          | N = 248       |
|----------------------|---------|--------------------|-----------------|---------------|
| Age, yrs             | 72 ± 9  |                    | LAD             | 67.3%         |
| Male, %              | 77 1    | Target vessel      | LCx             | 7.7%          |
|                      |         | laiget vessei      | RCA             | 24.2%         |
| Diabetes meilitus, % | 37.8    |                    | LM              | 0.8%          |
| Hyperlipidemia, %    | 84.0    | Reference vess     | el diameter, mm | $3.0 \pm 0.5$ |
| Hypertension %       | 00.0    | Minimum lumer      | n diameter, mm  | $1.1 \pm 0.4$ |
|                      | 83.2    | Diameter steno     | sis             | 63.2 ± 11.5%  |
| Prior MI, %          | 24.0    | Lesion length, r   | nm              | 25.8 ± 11.3   |
| Prior CABG, %        | 57      | Calcified length   | , mm            | 42.8 ± 21.2   |
|                      | 0.7     | Severe calcifica   | ation           | 98.4%         |
| Renal insufficiency  | 22.1    | Bifurcation lesion |                 | 31.5%         |

CRF<sup>\*</sup>

#### **Procedural Characteristics**

| Characteristic              | OCT Pooled<br>N=262 |
|-----------------------------|---------------------|
| Procedure time, min         | 70 ± 24             |
| Contrast volume, ml         | 207 ± 75            |
| Pre-dilatation              | 34%                 |
| IVL catheters per patient   | $1.4 \pm 0.8$       |
| Max IVL inflation pressure  | $6.0 \pm 0.6$       |
| IVL balloon to artery ratio | $1.3 \pm 0.2$       |
| Pulses delivered            | 87 ± 51             |
| Post-IVL dilatation         | 9%                  |
| Stents placed per patient   | $1.3 \pm 0.5$       |
| Post-stent dilatation       | 96%                 |

SCRF<sup>™</sup>
TCT

#### **Visible Calcium Fracture Characteristics**



Average of 3.2 fractures per lesion demonstrated by OCT

CRF<sup>\*</sup>

#### **MLA Not Co-located with Pre-Procedural Max Calcium Site**

Pre-IVL Post-IVL Post-Stent Lumen Area: 8.91mm<sup>2</sup> Lumen Area: 3.81mm<sup>2</sup> Lumen Area: 5.72mm<sup>2</sup> Stent Area: 8.44mm<sup>2</sup>



#### **Lesion Characteristics and Stent Deployment Outcomes**

|                                         | Pre-IVL<br>N=248 | Post-stent<br>N=245 |
|-----------------------------------------|------------------|---------------------|
| MLA, mm <sup>2</sup>                    | 2.1 ± 1.0        | $6.2 \pm 1.9^{*}$   |
| Area stenosis @MLA site, %              | 72 ± 12          | 18 ± 20             |
| Calcium arc @max calcium site, °        | 270 ± 81         |                     |
| Calcium thickness @max calcium site, mm | 0.96 ± 0.25      |                     |
| MSA, mm²                                |                  | 6.0 ± 1.9           |
| Mean stent area, mm <sup>2</sup>        |                  | 7.9 ± 2.3           |
| Stent expansion @max calcium site, %    |                  | 103 ± 29            |
| Mean stent expansion, %                 |                  | 107 ± 29            |
| Any malapposition strut, %              |                  | $3.9 \pm 4.6$       |

CRF<sup>™</sup>
 CR

\*MLA was never co-localized with the pre-IVL maximum calcification

#### **Predictors of Stent Expansion**

| Variable                                              | Regression coefficient (95%CI) | p-value |
|-------------------------------------------------------|--------------------------------|---------|
| Number of visible calcium fractures × fracture length | -0.26 (-1.36, 0.85)            | 0.65    |
| Max calcium thickness at max continuous calcium site  | 5.25 (-9.54, 20.04)            | 0.49    |
| Max superficial continuous calcium arc                | -0.03 (-0.09, 0.03)            | 0.38    |
| Length of continuous calcium ≥270°                    | 0.61 (-0.97, 2.20)             | 0.45    |
| Circumferential (360°) calcium                        | 3.93 (-9.43, 17.30)            | 0.56    |
| Number of pulses                                      | 0.06 (-0.01, 0.14)             | 0.11    |
| Balloon to artery ratio <sup>*</sup> , per 0.1        | 4.51 (2.57, 6.45)              | <0.0001 |
| Maximum balloon pressure <sup>*</sup> , atm           | -0.28 (-1.74, 1.18)            | 0.71    |

\*Balloon to artery ratio and maximum balloon pressure derived from the largest post-dilatation or stent balloon used during the procedure.

CRF<sup>\*</sup>

Good stent expansion achieved regardless of calcium burden or visible calcium fracture

#### **Final Angiographic and 30-day Clinical Outcomes**

| Core Lab Assessment                       | OCT Pooled<br>N=262 | CEC Adjudicated               | OCT Pooled<br>N=262 |
|-------------------------------------------|---------------------|-------------------------------|---------------------|
| Final in-stent diameter stenosis          | 12.2 ± 6.8%         | 30-d MACE                     | 4.6%                |
| Acute gain, mm                            | $1.6 \pm 0.4$       | Cardiac death                 | 0.0%                |
|                                           |                     | All MI                        | 4.6%                |
| Any serious angiographic<br>complications | 0.0%                | NQWMI                         | 4.6%                |
| Perforation                               | 0.0%                | Q-wave MI                     | 0.0%                |
| Abrupt closure                            | 0.0%                | TVR                           | 0.4%                |
| Slow flow                                 | 0.0%                | Target lesion failure         | 4.6%                |
| No reflow                                 | 0.0%                | Stant thrombosis (definite or |                     |
| Distal embolization                       | 0.0%                | probable)                     | 0.4%                |

Safety of IVL treatment in calcified coronary lesions

🛠 CRF

## Conclusions

- The present individual patient data pooled analysis of 4 studies (N=262) represents the largest evaluation of IVL by OCT
- No serious angiographic complications were observed confirming the safety of IVL for the treatment of severely calcified coronary lesions
- OCT demonstrated extensive calcium fracture after IVL treatment with excellent stent expansion of severely calcified lesions
- Visible calcium fracture and calcium characteristics were not predictors of stent expansion following treatment with IVL



## OCT Characterization of Eccentric Versus Concentric Calcium Treated with Shockwave IVL



### **Angiographic Lesion Characteristics**

| Core Lab   | o Analysis            | ≤ 180°<br>N=56 | 181° - 270°<br>N=56 | 271° - 359°<br>N=51 | 360°<br>N=66  | P value |
|------------|-----------------------|----------------|---------------------|---------------------|---------------|---------|
|            | LAD                   | 66.1%          | 75.4%               | 64.7%               | 68.2%         | 0.62    |
| Target     | LCx                   | 8.9%           | 1.8%                | 9.8%                | 6.1%          | 0.27    |
| vessel     | RCA                   | 23.2%          | 21.1%               | 25.5%               | 25.8%         | 0.93    |
|            | LM                    | 1.8%           | 1.8%                | 0.0%                | 0.0%          | 0.59    |
| Referenc   | e vessel diameter, mm | $2.9 \pm 0.5$  | $3.0 \pm 0.5$       | $2.9 \pm 0.5$       | 3.1 ± 0.5     | 0.26    |
| Minimum    | lumen diameter, mm    | $1.1 \pm 0.4$  | $1.1 \pm 0.4$       | $1.1 \pm 0.4$       | $1.1 \pm 0.4$ | 0.93    |
| Diameter   | stenosis              | 61.4 ± 10.9%   | 62.9 ± 12.8%        | 61.3 ± 12.3%        | 62.8 ± 10.5%  | 0.93    |
| Lesion lei | ngth, mm              | 24.3 ± 10.1    | 24.8 ± 9.1          | 25.6 ± 13.3         | 27.9 ± 11.4   | 0.24    |
| Calcified  | length, mm            | 35.3 ± 19.4    | 44.6 ± 18.7         | 42.8 ± 20.2         | 49.9 ± 23.0   | 0.002   |
| Severe ca  | alcification          | 96.4%          | 100%                | 100%                | 98.5%         | 0.45    |
| Bifurcatio | n lesion              | 32.1%          | 24.6%               | 35.3%               | 31.8%         | 0.66    |



## **Pre-IVL OCT Characteristics**

| Core Lab Analysis                   | ≤ 180°<br>N=56 | 181° - 270°<br><sub>N=56</sub> | 271° - 359°<br><sub>N=51</sub> | 360°<br>N=66 | <i>P</i> value |
|-------------------------------------|----------------|--------------------------------|--------------------------------|--------------|----------------|
| Minimum lumen area, mm <sup>2</sup> | 2.0 ± 1.1      | 2.1 ± 1.0                      | $2.0 \pm 0.8$                  | 2.1 ± 0.9    | 0.85           |
| Area stenosis, %                    | 72.4 ± 10.5    | 70.1 ± 11.2                    | 72.7 ± 10.3                    | 73.1 ± 12.5  | 0.24           |
| Max continuous calcium arc*, °      | 131.1 ± 30.4   | 225.3 ± 27.3                   | 309.3 ± 23.6                   | 360.0 ± 0.0  | <0.0001        |
| Calcium index, ° × mm               | 1660 ± 803     | 3069 ± 1074                    | 3794 ± 1423                    | 5522 ± 2291  | <0.0001        |
| Max calcium thickness, mm           | 0.93 ± 0.27    | 0.92 ± 0.21                    | 1.01 ± 0.27                    | 0.97 ± 0.25  | 0.21           |
| Min calcium thickness, mm           | 0.41 ± 0.13    | 0.35 ± 0.13                    | $0.28 \pm 0.14$                | 0.27 ± 0.13  | <0.0001        |

\*Continuous calcium angle was defined as the maximum uninterrupted calcium angle observed in the lesion and was used to define the category assignment.

CRF<sup>\*</sup>

Divided into ~quartiles based on maximum continuous calcium angle

#### **Procedural Characteristics**

| Core Lab Analysis           | ≤ 180°<br>N=56 | 181° - 270°<br><sub>N=56</sub> | 271° - 359°<br><sub>N=51</sub> | 360°<br>N=66     | <i>P</i> value |
|-----------------------------|----------------|--------------------------------|--------------------------------|------------------|----------------|
| Procedure time, min         | 70.1 ± 31.1    | 65.8 ± 31.6                    | 67.6 ± 30.0                    | 69.7 ± 31.9      | 0.87           |
| Contrast volume, ml         | 215.5 ± 89.6   | 198.1 ± 76.4                   | $208.5 \pm 68.6$               | $206.6 \pm 65.8$ | 0.68           |
| Pre-dilatation, %           | 21.4%          | 29.8%                          | 25.5%                          | 39.4%            | 0.15           |
| IVL catheters per patient   | $1.3 \pm 0.6$  | $1.4 \pm 0.9$                  | $1.5 \pm 0.8$                  | $1.5 \pm 0.6$    | 0.47           |
| Max IVL inflation pressure  | $6.0 \pm 0.3$  | $6.0 \pm 0.6$                  | $6.0 \pm 0.8$                  | $6.0 \pm 0.6$    | 0.92           |
| IVL balloon to artery ratio | 1.3 ± 0.2      | 1.2 ± 0.2                      | 1.3 ± 0.2                      | 1.3 ± 0.2        | 0.87           |
| Pulses delivered            | 86.6 ± 44.6    | 87.8 ± 60.6                    | 83.3 ± 49.8                    | 90.9 ± 38.1      | 0.91           |
| Post-IVL dilatation, %      | 3.6%           | 8.8%                           | 5.9%                           | 10.6%            | 0.47           |
| Stents placed per patient   | $1.3 \pm 0.5$  | 1.3 ± 0.6                      | $1.4 \pm 0.6$                  | $1.4 \pm 0.5$    | 0.80           |
| Post-stent dilatation       | 94.6%          | 98.2%                          | 96.1%                          | 98.5%            | 0.57           |

SCRF<sup>™</sup>
TC1

Similar procedural approach across calcium angle quartiles

#### **Consistent Outcomes in Eccentric and Concentric Calcium**





#### Impact of IVL Treatment in Eccentric Calcification



Good luminal gain following IVL treatment (continuous calcium angle: <180°)

CRF'

#### **Impact of IVL Treatment in Concentric Calcification**



Good luminal gain following IVL treatment (continuous calcium angle: 181° to 270°)

CRF'

## Impact of IVL Treatment in 360° Coronary Calcification



Good luminal gain following IVL treatment (continuous calcium angle: 360°)

CRF

#### Increased Calcium ⇒ Increased Visible Fracture







#### **Consistent MSA and Stent Expansion Regardless of Visible Fracture**



OCT may not detect subtle micro-fractures in calcific plaque

CRF

#### **Micro-fracture Visualization by MicroCT**



OCT may not detect subtle micro-fractures in calcific plaque

CRF<sup>\*</sup>

Virmani R., CVPath Institute

## **Post-stent OCT outcomes**

| Core Lab Analysis                                 | ≤ 180°       | 181° - 270°  | 271° - 359°  | 360°         | P value |
|---------------------------------------------------|--------------|--------------|--------------|--------------|---------|
| Minimum lumen area <sup>*</sup> , mm <sup>2</sup> | 6.1 ± 2.1    | 6.1 ± 1.9    | 6.2 ± 1.8    | 6.4 ± 1.9    | 0.78    |
| Acute lumen gain at MLA site, mm <sup>2</sup>     | 4.1 ± 1.7    | 4.0 ± 1.6    | 4.2 ± 1.6    | 4.4 ± 1.8    | 0.73    |
| Mean lumen area, mm <sup>2</sup>                  | 8.1 ± 2.6    | 8.1 ± 2.1    | 8.2 ± 2.3    | 8.7 ± 2.2    | 0.22    |
| Mean stent area, mm <sup>2</sup>                  | 8.0 ± 2.7    | 7.8 ± 2.1    | 7.8 ± 2.1    | 8.3 ± 2.3    | 0.67    |
| Mean stent expansion, mm <sup>2</sup>             | 110.6 ± 30.8 | 108.1 ± 24.8 | 100.9 ± 24.1 | 105.1 ± 22.0 | 0.36    |
| Any malapposition strut, %                        | 1.9 ± 2.5    | 3.0 ± 3.5    | 4.8 ± 6.2    | 5.2 ± 4.5    | <0.0001 |

Consistent outcomes regardless of calcium angle



## Conclusions

- OCT demonstrated consistent MSA and stent expansion outcomes in eccentric and concentric calcium
- Increased IVL-induced calcium fracture was observed in proportion to the amount of calcium
- Consistent MSA and stent expansion outcomes were observed regardless of the presence of visible calcium fracture
  - Micro-CT imaging suggests OCT may not detect subtle micro-fractures in calcific plaque

